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ABSTRACT

It is of general interest to find criteria for a matrix to be positive
(or negative)- semidefinite. The usual characterization of semi-
definite matrices in terms of their principal minors can be rather
laborious to implement practically. We present here an elementary
proof of a known alternate characterization of a semidefinite matrix
in terms of its null-space and of its largest characteristic value. An
iterative procedure is also suggested which may be useful in deciding
the semidefiniteness of a matrix.




A NOTE ON SEMIDEFINITE MATRICES

In what follows A will always represent a real, symmetric, nxn
* e ok
matrix. If, for each xeR® i it is true that xAxT_>_ O( ) then we say

that A is positive-semidefinite, denoted: p. s (@l 5 aif (xAxT)(yAyT) 4 0

for all x,ye€R"™ we say that A is semidefinite, denoted s.d. . We first

prove the following:

THEOREM 1. The following are equivalent:

(i) A is s.d.

2
(ii) (xAyT) < (xAxT)(yAyT) all x, yeRn

'

R 2. T

(iii) x€eR™, xAx" = 0 —2xA"x" = 0

2
(iv) xeR®, xA°xT = 1 = (xAxL) > O

(v) xeR™®, xAxT = 0= xA = 0
PROOF: We show (i) = (ii) = (iii) = (iv) = (v) = (i).
(i) = (ii)
Suppose A is s.d., letx,y €R™. Consider the real quadratic polynomial p

defined by:

(x +Ay)A(x + )\y)T =

p(\)

xAx T + ZXxAyT + XzyAyT

Since A is s.d., p does not change sign, i.e., its discriminant is non-

positive, whence:

2
4(xAy )" - 4(xAx ) yAyT) < 0,

R" = {x |x=(x1,..., xn)and x5 is a real number for i =1, ..., n}.

ek
(%) If xeR", xT denotes the transpose of x.




giving the desired result.

(i1) = (iii).
n T o T, 2 .

Suppose x€R~ and xAx~ =0, then, from (ii), {(xAy") <0, i.e.,
xAyT = 0, for all y€R". Thus xA =0, but xA%xT = (xA)(xA)T = 0.

(iii) = (iv).

2

If xeR™ and (xAxT) < 0 then xAxT = 0 and, by (iii), xAZxT =10},
contradicting xAZxT = 1.

(iv) = (v).

7

If xeR™ and xAxT = 0 then, by (iv), xAZx’r < 0 (because if xAZx >0

then we couid normalize x to get xAZxT = 1, xAxT = 0). However,

2.T 2. T
x

xA%xT = (xA)xA)T, and thus xA°x’ > 0 with equality holding if and only

if xA =0.
(v)= (i).

Suppose (i) is false, i.e., there exist x,yeRn such that xAxT >0,

YAYY < 0. By snitabis neranitesstion [dividing x By (s /2

l/2], we may assume that AR = 1, yAyT = -1. Now let:

and y by

(-yAy)
1/2
(1) X

2
xAyT + [1 4 (xAay ) ]

(2) =z Ax +y

We claim that zA £ 0 and zAzT = 0, thus contradicting {(v). First, if
zA = 0 then multiplying (2) by AxT and AyT we get:

g T T

0 AxAx~ + yAx™ = N + xAy

0 =XxAyT +yAyT = XxAyT -1,

Combining the last two equations:

0 = AxAyT - 1 =(-xAy )NxAy’) - 1

A-(xay )2,




a contradiction, thus zA # 0. However,

T

zAz ()\x+y)A()\x+y)T =

"

= XZxAxT + ZXxAyT + yAyT

A b ENwAg T - 1,

"

and X was chosen to be precisely one of the two (real) roots of the preceding

quadratic polynomial in \. qg.e.d.

Several comments are in order. Obviously, A is s.d. if and only if
A is p.s.d. or -A is p.s.d. Condition (ii) of Theorem 1 is a generaliza-

tion of the Cauchy-Schwartz inequality, namely:
e B F n
(3) (uv’) < (uu"Nvv') all u,veR,

for if we take A to be the nxn identity matrix which is clearly p.s.d., we
obtain (3) from (ii) - Theorem 1. Condition (v) - Theorem 1, or its obvious
equivalents (iii) and (iv), states that if we consider xA, the image under the
linear transformation A of a point x in- R", then A cannot be perpendicular
to x unless x is in the null-space of A. Alternately , (v) - Theorem 1
states that if x is not in the null-space of A then its image under A cannot
be perpendicular to x.

We proceed next to obtain results which are, in a sense, ''refinements"
of conditions (ii) (see Lemma 1 below) and (iv) (see Theorem 2) of Theorem 1.
Lemma 1 is a generalization of the well known fact, associated with the
Cauchy-Schwartz inequality, stating that equality holds in (3) if and only if
u,v are linearly dependent. We shall apply Lemma 1 in the proof of Theorem

3.




LEMMA 1

2
Let A be s.d.. If x,ye‘Rn then (xAyT) = (xAxT)(yAyT) if and only if

xA,yA are linearly dependent.

PROOF: If, say, xA = AyA, where N\ is a real number, then x.AyT =
AyAyT while xAx® = AyAx® = AxAy! = NyAyT. Whence it follows that

2 2 T,2 T T
(xAyT)" = W(yay ") = (xAx NyAy ).
T,2 T T T
On the other hand, suppose (xAy ) = (xAx )}yAy ). If xAx™ =0
or yAyT = 0 then, by {v) - Theorem 1, xA =0 or yA = 0 and we certainly
can conclude that xA, yA are linearly dependent. Otherwise, say, x.AxT> 0
and yAyT > 0, consequently x.AyT £0. Let p = signum (x.AyT) and let:

& T)I/Z

(yAy

pixaxT)1/2

&

then a,Pp £ 0 and:

(ax + PBy)A(ax + ﬁy)T = uzx.AxT + ﬁzyAyT + Zo.ﬁxAyT =
= 2(xAxT)(yAyT) - 2p(xay DixaxT)EyayT) /2 -
1/2 T.1/2

2(xaxT)(yayT) - ZﬂxAyTa(xAxT) (yAy™) =

T

. T T
2(xAx T MyAyT) -2(xAx N yAy ) = G .

Thus, (ax + PylA(ex + By)T =0 and, by (v) - Theorem 1, 0=(ax+py)A =

= axA + ByA. g.e.d.

The preceding lemma was motivated, in part, by an examination of
(ii) - Theorem 1 in case A is the identity matrix, in that case (since the
square of the identity is the identity), (iv) - Theorem 1 states: xeR",
xxT =1 implies (xxT)2 > 0, which is, of course, true. We notice, though,

2
that (xAxT) has then a positive lower bound, namely 1. In general, this

-




will be the case, i.e., a positive lower bound will exist for (xAxT) in

{iv) - Theorem 1, whenever A is s.d.. Clearly, when A is identically
zero any positive number will serve as a lower bound, because there is no

x e R™ for which xAsz = 1, thus we will exclude A =0 in the next theorem:

THLZOREM 2

Suppose A is p.s.d. and A # 0, then there exist a positive real number p

and an xoe R™ such that:

(4) xeR", A =1 = A% L > g
(5) onzxoT =1 and onxoT = e
PROOF: Let
X = <rxlx€Rn and xAZxT=17
L J
g = inf xAxT

xe€X
Since A is p.s.d. and A # 0, p is well defined and in fact p > 0
d eatisfies {(4}. By definition of u, there exists a sequencc Xy such that
6) x, €X for k=1, 2,

(71 )‘:kAxk converges to w.

We consider two cases:

Case 1. The sequence *1 has a bounded subseauence. In this eventuality
the %) have 2 point of accumulation x,, for which it must be true (by (6) and
(7} and becanse X is closed! that x € X ant! on'\:T =p. Thus x, satis-

fies {5}. That u is positive then follows from (v} - Theorem l. The two
preceding facts, together with the remark above that . satisfies 4, complete

the proof.




Case 2. The sequence -&xk} has no bounded subsequence, i.e., we may
T) 1/2

. — o, and[xk|> D, & =0 By o een .
We define another sequence {yk] by:

assume that \xk\ = (xl‘x

. XK

y 1 ————
k | ¥\
Now AyT converge to zero, because A & converge to and also
¢ Yk g ' X Ax g "
ykAzykT converge to zero, because xkAzx,k =1 all k. However, \yk| =1,
thus the yk's have an accumulation point y, for which it must be true that

yAyT = 0. Thus yA =0 by (v) - Theorem 1.

Next we observe that from the definition of y and the yk's it follows
that whenever y has a non-zero component then infinitely many xk's have
the same component non-zero, and in fact of the same sign. We may assume
that an appropriate subsequence of Xy has been selected so that whenever
y has a positive (negative) component then all the xk's have the same
component positive (negative). Now, if {sz is any sequence of real

numbers then:

(xk + XkY)A(xk + XkY)T = xkAka

2 T, 2. T,
and (xk + Xky)A (xk + )\ky) = xkA X
because yA = 0. We can thus replace x) by X t Xky, k=1 2, «oe; and

(6) and (7) will still hold. However, by an appropriate choice of )\k we can
reduce the number of non-zero components in each of the xk's. eventually
(repeating the above process, if necessary) we obtain a sequence %xk\g 5
satisfying (6)-(7) and which has an accumulation point, thus reducing it to

case 1. q.e.d.




As an immediate consequence of Theorem 2 we can ''strengthen'

(iv) - Theorem 1.

Corollarz
If A is s.d. and A # 0 then

2
minimum {(xAxT> | x€R™ and xAsz = 1}
exists and is positive.

PROOF: As noted before, if A is s.d., then either A is p.s.d. or -A is
p-s.d., in either case the square of the p in Theorem 2 is the required
minimum and the xq of the same theorem is the required minimizing x.
The u and X0 of Theorem 2 are, as one might expect, intimately
related to the characteristic values of A. This is brought forth in the next

theorem.

THEOREM 3

Let A bep.s.d., A#0. Let p and xq be as in Theorem 2 and let )\n be
the largest characteristic value of A, then an p'l and on is a character-

istic vector of A corresponding to )\n.

PROOF: Suppose M\ 1is any characteristic value of A, i.e., there exists
an xeRn, x # 0, such that xA = Ax, whence xAzx'r N )\xAxT. If X\ =0 then

certainly A < p..l. Assuming \ # 0, it follows that xA # O (because x # 0 )

and thus, by (v) - Theorem 1, xAxT> 0. Let y = (xAsz)-l'le, then

T=( 2. T,1 T

yAzy = 1 and, by definition of pu, yAyT > p. However yAy xA'x") (xAx

- 1

= N7, thus X\ < B . We have just demonstrated that X\ s p‘l for any

1

characteristic value N of A, thus )\n < M

) =




To complete the proof of this theorem it will suffice to show that there
is a characteristic value N\ of A such that \ = p.'l, and (on)A = Mon),
X being as in Theorem 2. Let x = xq be a minimizing X0 in question.
Since A and Az are p. s.d. (the square of any real symmetric matrix is

i T 34T

p-8.d.), and xA £ 0 (xAx~ = onxo = p > 0), it follows that xA " x =

= (x.A)A(xA)T > 0, and xA4x = (xA)AZ(xA)T> 0. Thus, if we define

(8) p = 2(xA’x T )xatxT)™!

then p is positive. Next let
(9) vy = x-pxA

The motivation for the above definition of y is as follows: we know x
minimizes a certain function, namely xAx, since we wish to derive from
this fact some properties of x we examine how xAx will change in the
direction of its gradient, namely 2xA. As defined in (9), y is a translation
from x precisely in the direction of that gradient, the particular value of p
chosen is designed to keep y within the ''feasibility'' set, i.e., yAZy = 1.

We check next the last mentioned condition:

2 T

2 T
yA'y (x - pxA)AT(x - pxA)~ =

xAsz - 2pr3xT + pzxA4xT =

1]

1]

1- 2p [xA3xT E %(xA4xT)]

1- 2p [ %A% - (A2 T)xAtc Ty LeatsT) ]

= 1.

One can, incidentally, readily check that the particular value of p, as given

in (8), is the only value of p (other than p = 0) which yields yAZy = 1. Now,




since yd\&y’1 = 1, we must have, by definition of g,

(10) yAy’I - xAxT = 0.

However,
yAyT- i = (x-f:ox,A)A(x-pr)T - xAxT =
= -prAZXT + p xA3xT =
e T
- 201 B (xa¥xT) - (xa%xT) | =

2p(xAtxT)" 1 [(xA3 xT)% - (xA2x T)(xatx )]

Thus, since p > 0, (xA4xT)'1 > 0 and because (10) holds, we have:

T

(11 (xa%x1)% > (xa2xT)(xa’xT) .

We now refer to inequality (3), which is a special case of (ii) - Theorem 1

with A being the identity, letting u = xA, v = xA2 we get:

(12) (x&°x )% < (xaxT)(xa®xT) .

Combining (11) and (12), we get:

(TBT Mt T)° o (ke g ) Omalt s }

However, from Liemma 1, again with A being the identity matrix, we then
know that xA, xAZ are linearly dependent. Since xA # 0, it follows that
there is a real number X\ such that xA2 =AxA, multiplying by

b xAsz = )\xAxT, and X\ = (xAx.T)-l = |J.-l- g.e.d.

is a final general result, we specialize (ii) - Theorem 1, and Lemma

1, for the case where A is non-singular.




THEOREM 4

Let A be p.s.d. and non-singular then,

(14) (uvH)? < (AuT ) va'vT) anl u,ver®
and equality holds above if and only if u, vA-1 are dependent.

PROOF We first note that A-l must be symmetric because AA-I =1,
Sy TF = 0= YT AT TR =AY TA. Bt the inverye is Guteed;

thus WY (A-I)T. Next, let u,v eR”, we let

(15) x=u, y = vA-1 A

One readily checks that:
xAy'-r = uvT, xAxT = uAuT, yAyT = vA v

Thus the desired inequality (14) follows from (ii) - Theorem 1. Now if (14)
is actually an equation, then from Lemma 1, using x,y as defined in (15), we
get u,vA-1 are linearly dependent. The converse also follows readily.

q.e.d.

Note: The condition of equality in (14) is directly connected with
characteristic vectors of A {and of course, those of A'l), for
suppose (14) is an equation and u = v # 0, then one sees immediately
that uA = Au for some real number A\. The corresponding converse

also holds in this case.

An iterative scheme, for deciding the definiteness of A, based on the
proof of Theorem 3 might go as follows:
(a) By examining the diagonal elements of A we have decided that, if

at all, A is p.s.d.

-10-




(b)

(c)

We have an x such that xA £0; if xAzx < 0 then A is not p-s.d.,

if xAzx > () normaliz¢ x so that x/\ax = 1 and proceed to (c)

We have an x such that xA £0, xAZx = 1; perform the transformation

given by (8) and (9). There are three cases:

Case 1. if yAyT > xAxT then A is not p.s.d.

T

Case 2. if yAy~ < xAxT return to beginning of (¢), using y as the

new ''test'' vector.
. T a0 : ol

Case 3. if yAy = xAx we have isolated a characteristic vector
of A, return to (b) using, as x, a vector independent of all

characteristic vectors thuz: far obtained.

The preceding is, of course, 'informal' in the sense that the iterative

procedure described above has not been shown to coverge.

= 1.]=
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